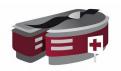

Anti-Aging 2018



Altern verstehen Altern messen Altern behandeln

Prof. Dr. Bernd Kleine-Gunk Präsident der Deutschen Gesellschaft für Präventions- und Anti-Aging Medizin (GSAAM)

Ist Altern eine Krankheit?

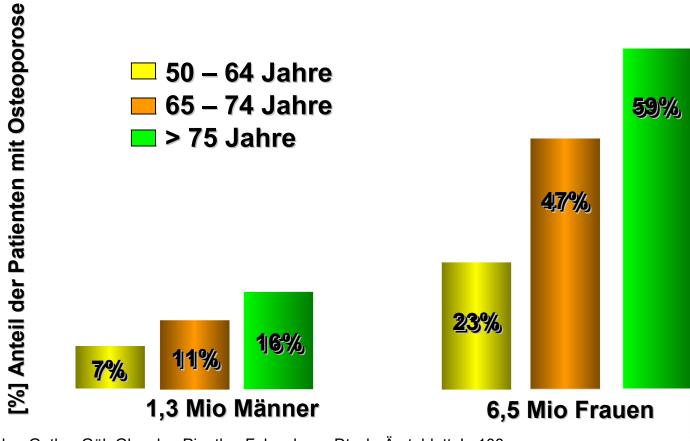
ESC Score – Kardiovaskuläre Erkrankungen

	Frauen								Alter (Jahre)	Männer											
	Nichtraucherinnen Raucherinnen					Nichtraucher				Raucher											
180	4	5	6	6	7	9	9	11	12	14		8	9	10	12	14	15	17	20	23	2
160	3	3	4	4	5	6	6	7	8			5	6	7	8	10	10	12	14	16	
140	2	2	2	3	3	4	4	5	6	7	65	4	4	5	6	7	7	8	9	11	
120	1	1	2	2	2	3	3	3	4	4	05	2	3	3	4	5	5	5	6	8	1
180	3	3	3	4	4	5	5	6	7	8		5	6	7	8	9	10	11	13	15	1
160	2	2	2	2	3	3	4	4	5	5	60	3	4	5	5	6	7	8	9	11	
140	1	1	1	2	2	2	2	3	3	4		2	3	3	4	4	5	5	6	7	1
120	1	1	1	1	1	1	2	2	2	3	00	2	2	2	3	3	3	4	4	5	
180	1	1	2	2	2	3	3	3	4	4		3	4	4	5	6	6	7	8	10	1
160	1	1	1	1	1	2	2	2	3	3		2	2	3	3	4	4	5	6	7	
140	1	1	1	1	1	1	1	1	2	2	55	1	2	2	2	3	3	3	4	5	
120		0	1	1	1	1	1	1	1	1		1	1	1	2	2	2	2	3	3	
180 160 140 120 180 160 140 120 180 160 140	1	1	1	1	1	1	1	2	2	2		2	2	3	3	4	4	4	5	6	
160	0	0	1	1	1	1	1	1	1	1		1	1	2	2	2	2	3	3	4	1
140	0	0	0	0	0	1	1	1	1	1	50	1	1	1	1	2	2	2	2	3	
120	0	0	0	0	0	0	0	0	1	1	30	1	1	1	1	1	1	1	2	2	
180	0	0	0	0	0	0	0	0	0	0		0	1	1	1	1	1	1	1	2	
160	0	0	0	0	0	0	0		0	0			0	0	1	1	1	1	1	1	
140	0	0	0	0	0	0		0	0	0	40		0	0		0	0	1	1	1	1
120	0	0	0	0	0	0	0	0	0	0	40	0	0	0	0	0	0	0	0	1	1
	4	5	6	7	8	4	5	6	7	8		4	5	6	7	8	4	5	6	7	1
									C	hole	esterin m	mol	/1								

¹ DeBacker G et al. European guidelines on cardiovascular disease prevention in clinical practice. The Third Joint Task Force of European and other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of eight societies and by invited experts) executive summary. Eur Heart J 2003; 24: 1601–10.

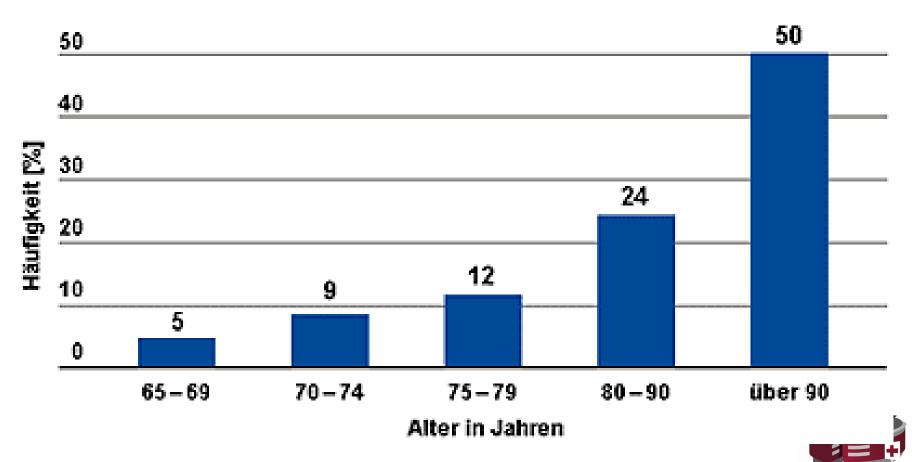
AGLA Score – Kardiovaskuläre Erkrankungen

AGLA Risiko-Score

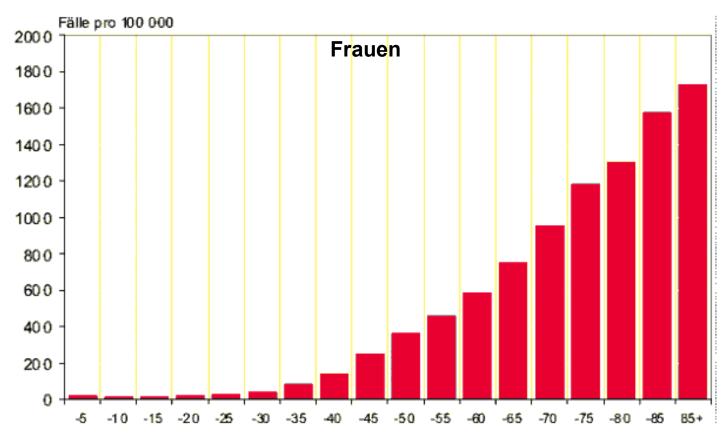

1) Punktwerte Risikofakto		Systolischer Blutdruck (mr	nHg)	LDL-Cholesterin (mmol/l)			
Ausprägung	3	■ < 120	0	< 2.59	0		
Alter (Jahre)		120–129	2	■ 2.59–3.36	5		
35–39	0	130–139	3	■ 3.37–4.13	10		
40-44	6	140-159	5	4.14-4.91	14		
45-49	11	■≥ 160	8	■≥ 4.91	20		
■ 50–54	16	Diabetes mell	litus	► Triglyzeride			
55–59	21	■ Nein	0	(mmol/l)			
■ 60–65	26	■ Ja	6	■ < 1.14	0		
Positive Fam	ilien-	▶ HDL-Choleste	rin	■ 1.14-1.70			
anamnese		(mmol/l)		■ 1.71-2.27			
■ Nein	0	■ < 0.91	11	■≥ 2.28	4		
■ Ja	4	■ 0.91-1.16	8	3 H C 10 10 10 10 10 10 10 10 10 10 10 10 10			
▶ Zigarettenra	ucher	■ 1.17–1.41	5				
■ Nein	0	■≥ 1.42	0]			
■ Ja	8						

- 2) Addition der Punktwerte aller Risikofaktoren
- 3) Absolutes 10-Jahres-Risiko für ein akutes Koronarereignis nach Gesamtpunktzahl
- ▶ 10-Jahres-Risiko für die Schweiz in %*
- 0–24 P. < 1
- 25–31 P. 1–2
- 32–41 P. 2–5
- 42–49 P. 5–10
- 50–58 P. 10–20
- \blacksquare > 58 P. > 20

Eur J Clin Invest. 2007; 37:925-32



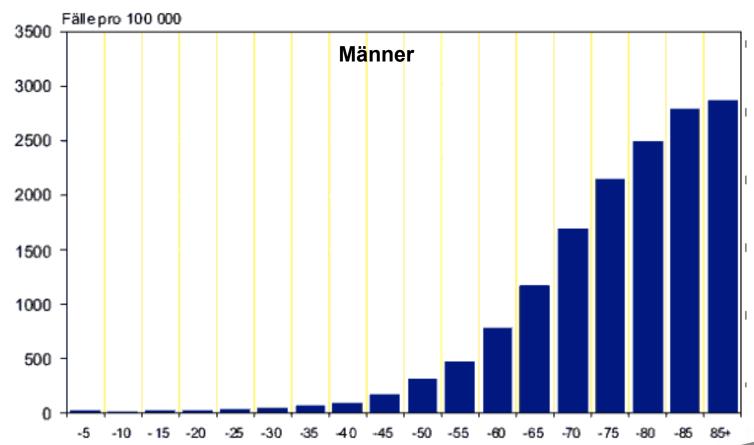
Osteoporose in Deutschland


Häusler, Gothe, Göl, Glaeske, Pientka, Felsenberg, Dtsch. Ärzteblatt Jg 103, Heft 39, 2006: 2542-2548

Altersabhängige Häufigkeit der Demenz

http://www.alzheimerinfo.de/alzheimer/zahlen/index.jsp

Bösartige Neuerkrankungen nach Alter 1989 bis 1998 im Saarland



Quelle der Statistik: *Arbeitsgemeinschaft Bevölkerungsbezogener Krebsregister in Deutschland. Krebs in Deutschland.*

3. erweiterte, aktualisierte Ausgabe, Saarbrücken, 2002

Bösartige Neuerkrankungen nach Alter 1989 bis 1998 im Saarland

Quelle der Statistik: *Arbeitsgemeinschaft Bevölkerungsbezogener Krebsregister in Deutschland. Krebs in Deutschland.*

^{3.} erweiterte, aktualisierte Ausgabe, Saarbrücken, 2002

Anti-Aging-Medizin

Ein uralter Menschheitstraum ...

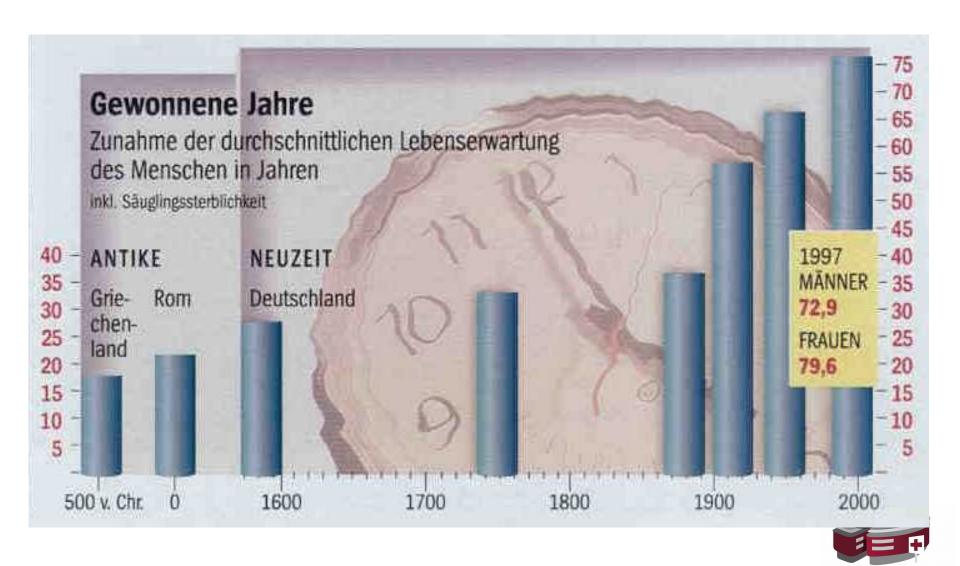
Lucas Cranach: Der Jungbrunnen, 1546

Anti-Aging-Medizin

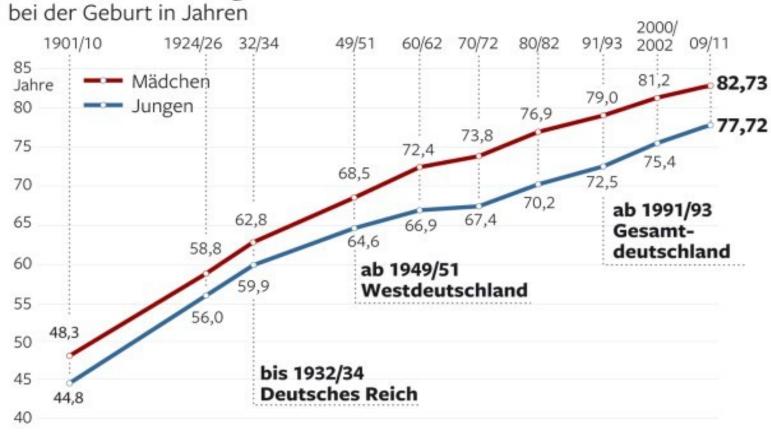
... der im 21. Jahrhundert Wirklichkeit werden könnte

John Glenn

1962: der erste Amerikaner im Weltraum


1998: erneute neuntägige Weltraummission im Alter von 77 Jahren

Ehrenpräsident der American Academy of Anti-Aging-Medicine (A4M)



Historische Entwicklung der Lebenserwartung

Historische Entwicklung der Lebenserwartung

Lebenserwartung in Deutschland

Quelle: Statistisches Bundesamt, dpa

Wie alt können wir werden?

Bisherige Rekordhalterin: die Französin Jeanne Calment mit 122 Jahren (1875 -1997)

Wie altern wir?

Europe PMC Funders Author Manuscripts

Anti-Aging-Medicine

Die wesentlichen Alterungsfaktoren sind auf molekularer Ebene verstanden und beschrieben

Europe PMC Funders Group Author Manuscript

Cell. Author manuscript; available in PMC 2013 November 21.

Published in final edited form as:

Cell. 2013 June 6; 153(6): 1194-1217. doi:10.1016/j.cell.2013.05.039.

The Hallmarks of Aging

Carlos López-Otín¹, Maria A. Blasco⁵, Linda Partridge^{3,4}, Manuel Serrano^{2,*}, and Guido Kroemer^{6,7,8,9,10}

¹Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain

²Tumor Suppression Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain

³Max Planck Institute for Biology of Ageing, Cologne, Germany

⁴Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK

⁵Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain

⁶INSERM, U848, Villejuif, France

Anti-Aging-Medizin Der molekularbiologische Ansatz

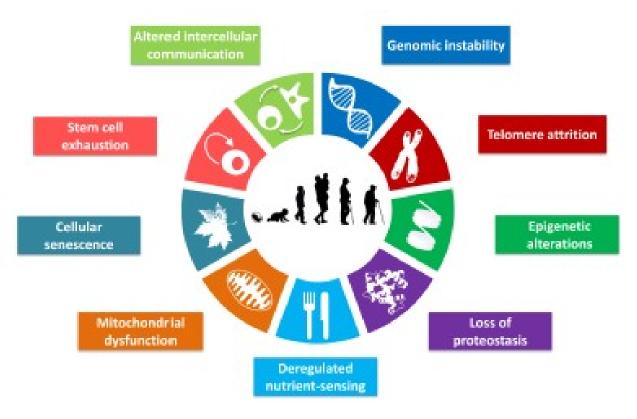
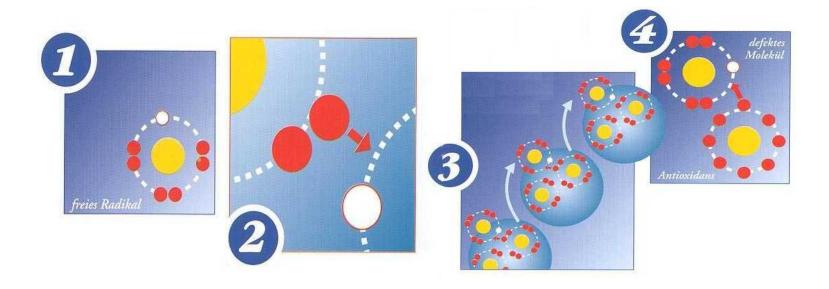


Figure 1. The Hallmarks of Aging

The scheme enumerates the nine hallmarks described in this review: genomic instability, telemere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient-sensing, mitochondrial dysfunction, cellular sensecence, stem cell exhaustion, and altered intercellular communication.

Anti-Aging-Medizin - Wie altern wir?

Die Verschleisstheorie



Der menschliche Körper altert wie eine Maschine, deren einzelne Bauteile durch ständigen Gebrauch verschleissen, rosten und schließlich kaputtgehen

August Weismann, 1882

Anti-Aging-Medizin - Wie altern wir?

Die Freie-Radikale-Theorie

Aggressive Moleküle (freie Radikale) verursachen Zellschäden. Die Akkumulation dieser Zellschäden führt zu Funktionseinbußen (Alterung) und schließlich zum Tod

Denham Harman, 1954

Alterungsfaktor oxidativer/nitrosativer Stress

Wie therapieren?

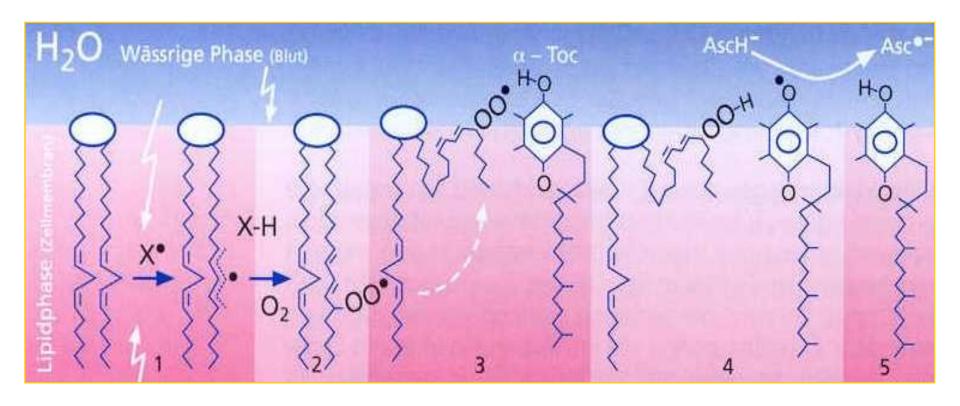
Natürliche Antioxidanzien:

- Vitamin A
- Vitamin C
- Vitamin E
- Carotinoide
- Flavonoide
- Coenzym Q10
- Sekundäre Pflanzenstoffe

Antioxidative Enzyme:

- Glutathion-Peroxidase (Selen)
- Superoxid-Dismutase (Zink, Mangan, Kupfer)
- Katalasen

Gibt es eine Anti-Aging-Diät?



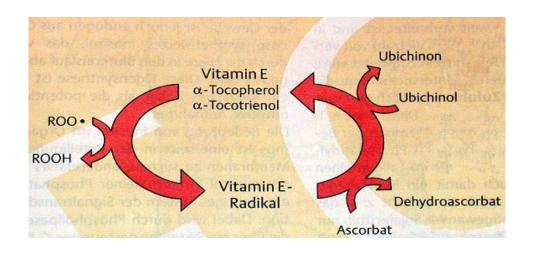
Wirkung von Vitamin E und C auf die Lipidperoxidation

nach: Biesalski

Antioxidanzien: Zusammenarbeit auf molekularer Ebene

nicht-enzymatisch

Mikronährstoffe, wie z.B.

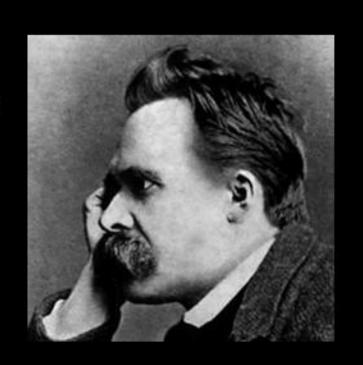

- Vitamin C
- Vitamin E
- Carotinoide
- Polyphenole
- Coenzym Q₁₀

enzymatisch

beteiligte

Spurenelemente, z.B.

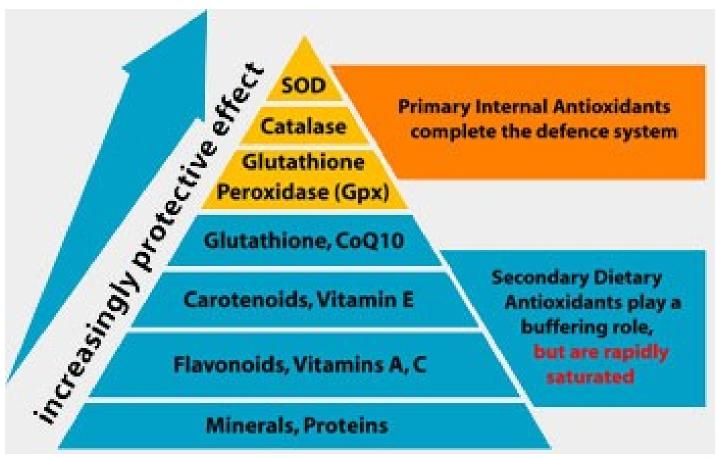
- Selen
- Kupfer
- Mangan
- Zink


(Biesalski und Grimm, 1998)

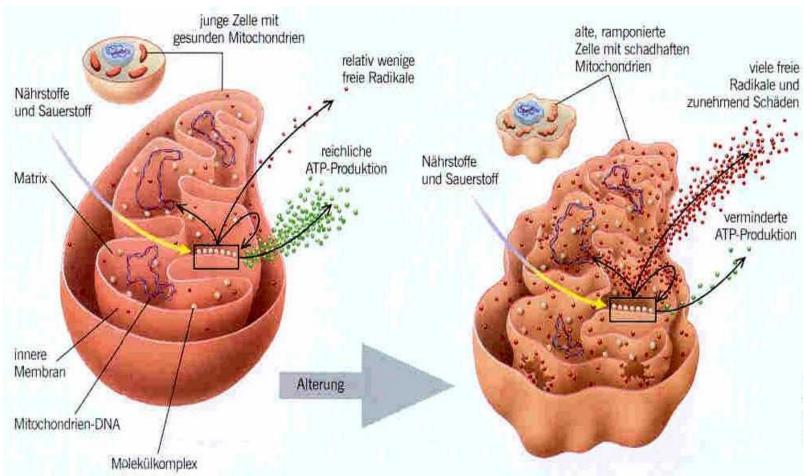
Das Hormesis Prinzip

Aus Schaden wird man gesund

Aus der Kriegsschule des Lebens. – Was mich nicht umbringt, macht mich stärker.



Friedrich Nietzsche

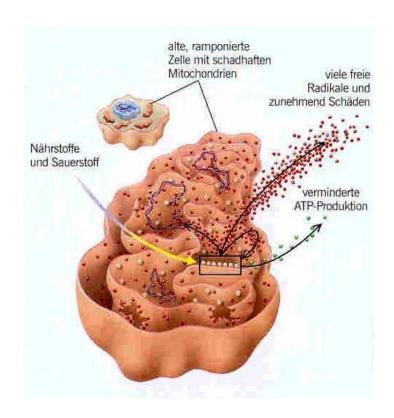

Warum Vitamintabletten nicht helfen

Ausbleibende Aktivierung körpereigener antioxidativer Enzymsysteme

Wie altern wir? - Verlust der mitochondrialen Funktion

Kraftwerke

Notwendig für die Energieproduktioner nicht ohne Schadenspotential



Altern ist eine Energiekrise der Zelle

Verantwortlich für das Altern der Zelle ist im Wesentlichen der Verlust der mitochondrialen Funktion

Alterungsfaktor mitochondrialer Funktionsverlust Wie therapieren?

Supplementierung:

- Coenzym Q10

Wichtiges Coenzym der oxidativen Phosphorylierung Starkes mitochondriales Antioxidans

- NADH (Nicotinamid Adenin Dinukleotid)

Energie lieferndes Coenzym der Atmungskette Schlüsselrolle für den Elektronentransport (intrazelluläre Knallgasreaktion)

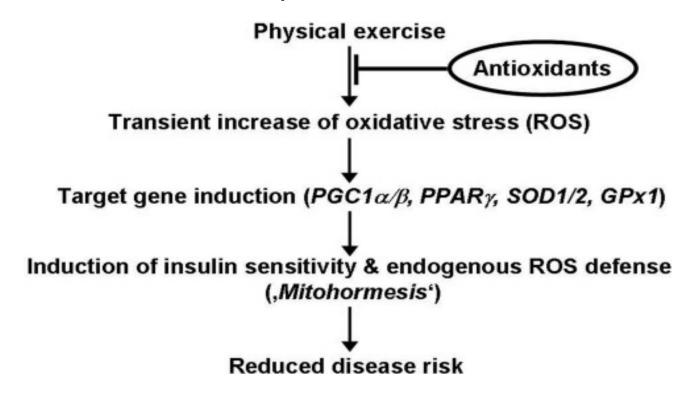
- L-Carnitin

Verantwortlich für den Transport langkettiger Fettsäuren an der inneren Mitochondrienmembran

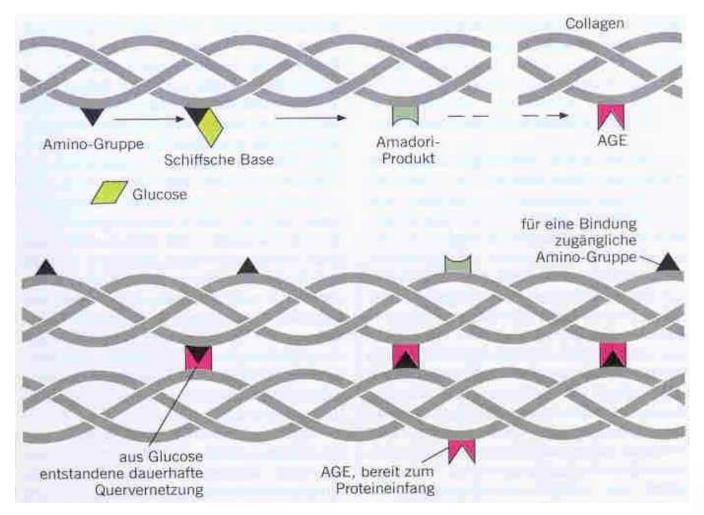
- α-Liponsäure

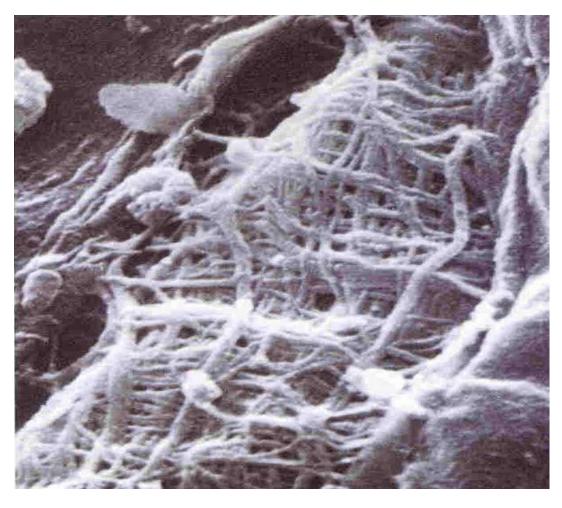
Coenzym der oxidativen Decarboxylierung, Verbindungsglied zwischen Glykolyse und Zitratzyklus, starkes Antioxidans

Warum ist Sport gesund?



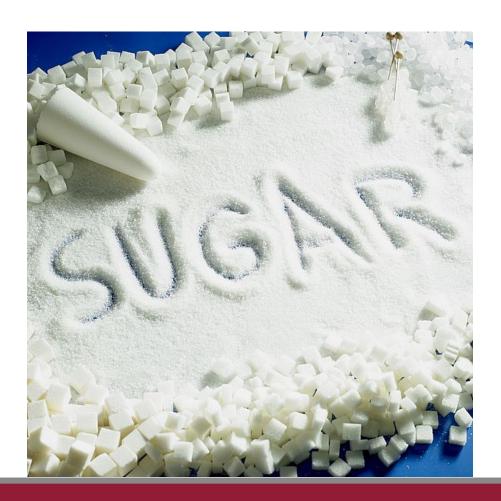
Alterungsfaktor mitochondrialer Funktionsverlust Wie therapieren?


Prinzip Mitohormesis


Bildquelle: Michael Ristow, et al. Proc Natl Acad Sci U S A. 2009 May 26;106(21):8665-8670.

Anti-Aging-Medizin – Wie altern wir? Advanced Glycosylation Endproducts (AGE)

AGE-Proteine


Rasterelektronenmikroskopische Aufnahme

Alterungsfaktor AGE - Proteine

Wie therapieren?

Zucker reduzieren

Alterungsfaktor AGE - Proteine

Wie therapieren?

250mg vor den Mahlzeiten

Alterungsfaktor AGE - Proteine

Länger leben mit Metformin?

Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea monotherapy and matched, non-diabetic controls

C. A. Bannister^{1,2}, S. E. Holden^{1,3}, S. Jenkins-Jones³, C. Ll. Morgan³, J. P. Halcox⁴, G. Schernthaner⁵, J. Mukherjee⁶ & C. J. Currie^{1,3}

Conclusions: Patients with type 2 diabetes initiated with metformin monotherapy had longer survival than did matched, non-diabetic controls.

treated with sulphonylurea had markedly reduced survival compared with both matched controls and those receiving metformin monotherapy. This supports the position of metformin as first-line therapy and implies that metformin may confer benefit in non-diabetes. Sulphonylurea remains a concern.

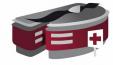
Alterungsfaktor AGE - Proteine

Wie therapieren?

Kalorienrestriktion (CR)

Erste systematische Untersuchung 1937 durch Clive McCay CR um 33% (bei Laborratten) bewirkt:

- signifikante Erhöhung der maximalen Lebenszeit
- Verlängerung der durchschnittlichen Lebenszeit um 50%


Warum wirkt Kalorienrestriktion?

	Life-span increase		Beneficial health effects	
	Dietary restriction	Mutations/ drugs	Dietary restriction	Mutations/ drugs
Yeast	3-fold	10-fold (with starvation/ DR)	Extended reproductive period	Extended reproductive period, decreased DNA damage/mutations
Worms	2- to 3-fold	10-fold	Resistance to misexpressed toxic proteins	Extended motility Resistance to mis- expressed toxic proteins and germ-line cancer
Flies	2-fold	60-70%	None reported	Resistance to bacterial infection, extended ability to fly
Mice	30-50%	30−50% (~100% in combination with DR)	Protection against cancer, diabetes, atherosclerosis, cardio- myopathy, autoimmune, kidney, and respiratory diseases; reduced neurodegeneration	Reduced tumor incidence; protection against age-dependent cognitive decline, cardiomyopathy, fatty liver and renal lesions. Extended insulin sensitivity
Monkeys	Trend noted	Not tested	Prevention of obesity; protection against diabetes, cancer, and cardiovascular disease	Not tested
Humans	Not determined	Not determined (GHR-deficient subjects reach old age)	Prevention of obesity, diabetes, hypertension Reduced risk factors for cancer and cardiovascular disease	Possible reduction in cancer and diabetes

Fig. 1 Experiments on dietary restriction (DR) and genetic or chemical alteration of nutrient-sensing pathways have been performed on a range of model organisms.

L Fontana et al. Science 2010;328:321-326

Kalorienrestriktion bei Primaten

Normalkost

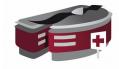
Nahrung: 688 kcal/d

Fettanteil: 25%

Blutdruck: 130/60 mmHg

Glucose: 71 mg% Insulin: 93 μIE/ml Triglyc.: 169 mg%

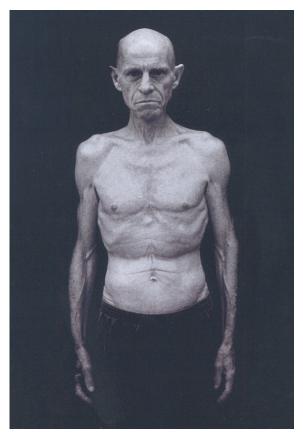
Kalorienreduzierte Diät


Nahrung: 477 kcal/d

Fettanteil: 10%

Blutdruck: 120/50 mmHg

Glucose: 56 mg% Insulin: 29 μIE/ml


Triglyc.: 67 mg%

Boehm 1994

Das Problem der Kalorienrestriktion

Die Übertragbarkeit auf den Menschen

Roy Walford

Erforderlich:

Kalorienrestriktion von 30%

Entspricht:

Reduktion von 2500 Kcal/die auf

1750 Kcal/die


Erfolg:

Nur bei konsequenter Anwendung

über viele Jahre.

Theoretisch.

Kalorienrestriktion

Sirtuin Aktivierung

CR - Mimetica

Aussichtsreichster Kandidat: Resveratrol

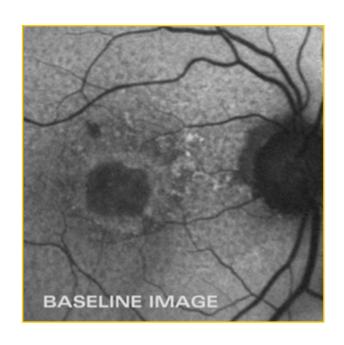
Sirtuin aktivierende Phytosubstanzen

Curcumin

Sirtuin aktivierende Phytosubstanzen

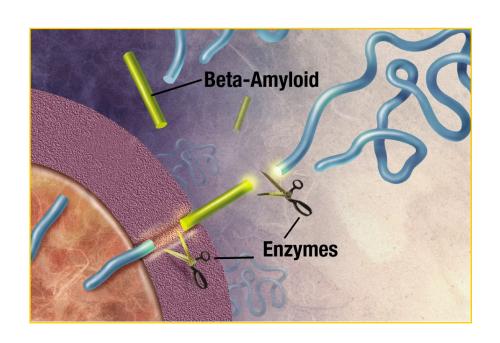
Epigallo Catechin Gallat

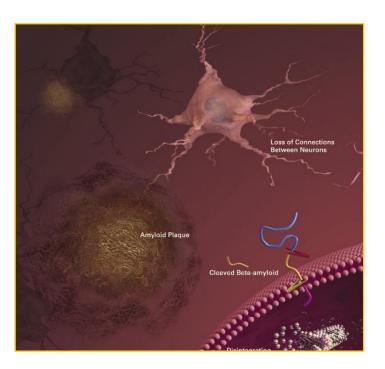
Die Mülltheorie Accumulation of microbiological garbage


Beispiel: Lipofuszin

Die Mülltheorie Accumulation of microbiological garbage

Herzinsuffizienz




Senile Makuladegeneration

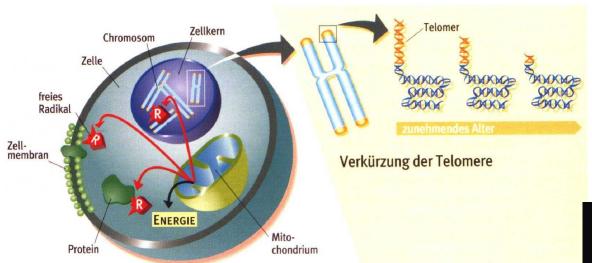
Beispiel: Lipofuszin

Die Mülltheorie Accumulation of microbiological garbage

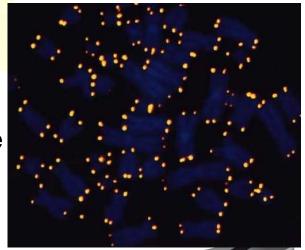


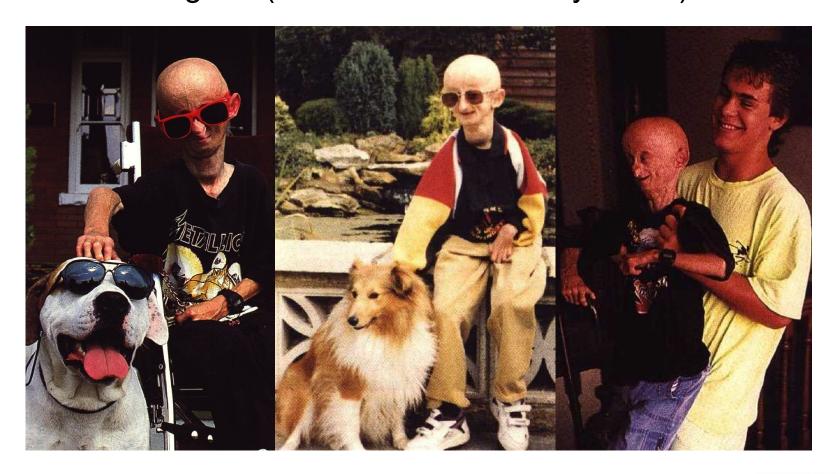
Beispiel: Beta-Amyloid

Die Programm-Theorie



Jede Zelle hat nur eine begrenzte Zahl von Teilungsmöglichkeiten (ca. 100), dann stirbt sie ab

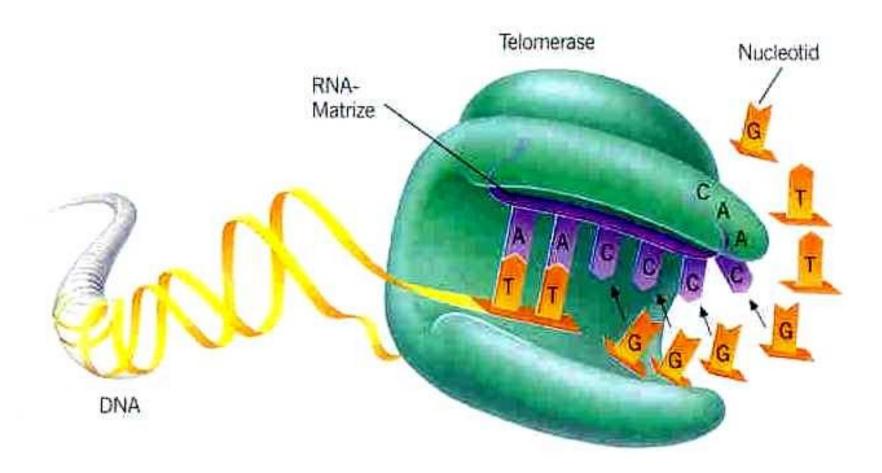

Leonard Hayflick, 1962


Die Telomer-Theorie

Durch jede Zellteilung verkürzen sich die Telomere an den Endstücken der Chromosomen. Sind sie aufgebraucht, stirbt die Zelle. Theorie der 'biologischen Uhr'

Anti-Aging-Medizin Progerie (Hutchinson-Gilford-Syndrom)

Inaktivität des Enzyms Telomerase durch Gendefekt



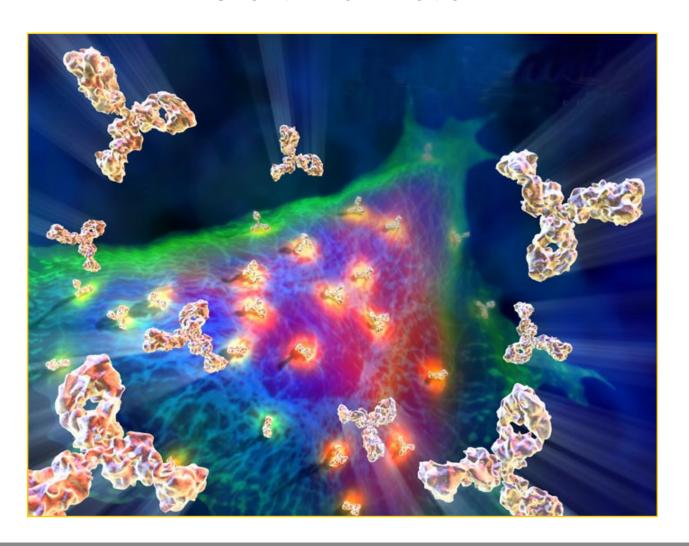
Alterungsfaktor Telomeren Verkürzung

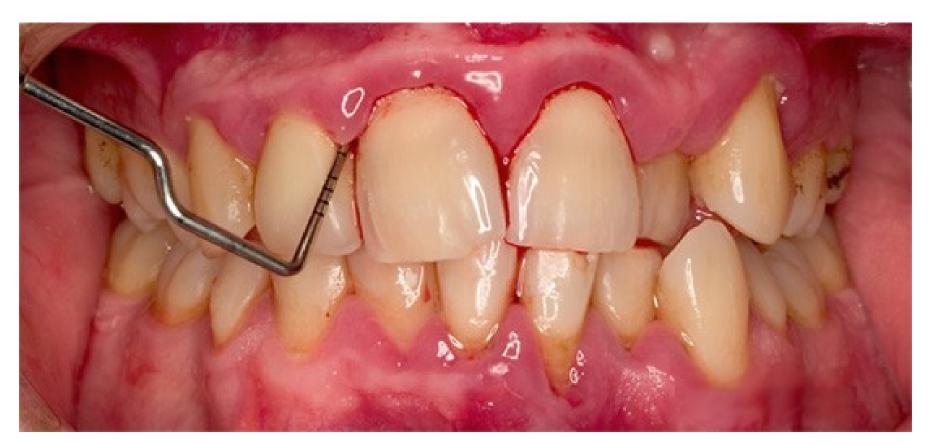
Wie messen?

Telomerase

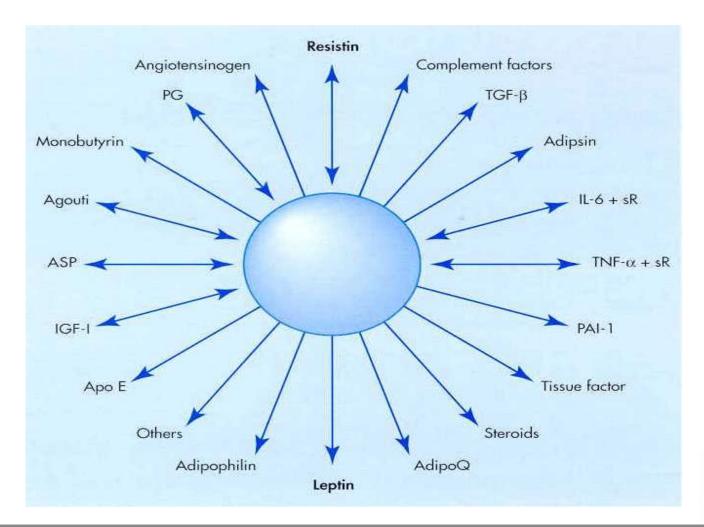
Enzymatische Regeneration der Telomere

Alterungsfaktor Telomeren Verkürzung

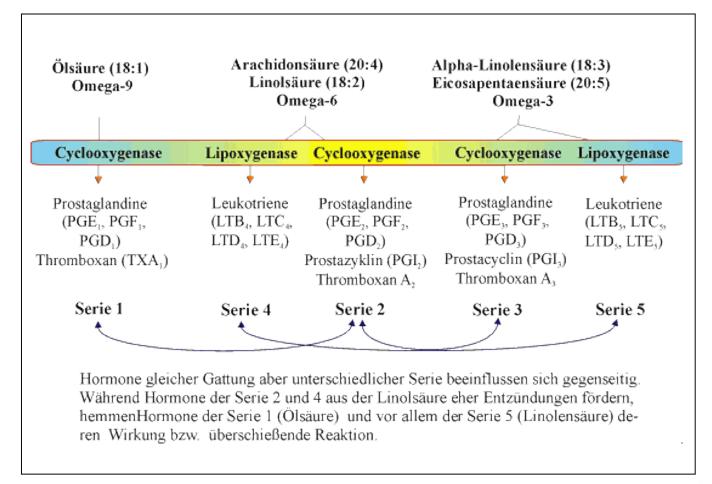

Wie therapieren?



Silent Inflammation



Quelle chronisch niederschwelliger Entzündung: Parodontitis



Quelle chronisch niederschwelliger Entzündung: Fettgewebe

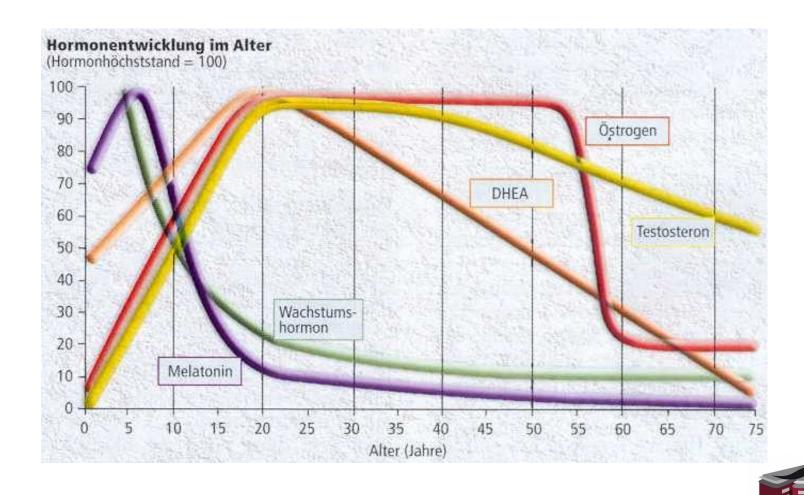

Zytokine und Nahrungsfette

Alterungsfaktor Silent Inflammation

Wie therapieren?

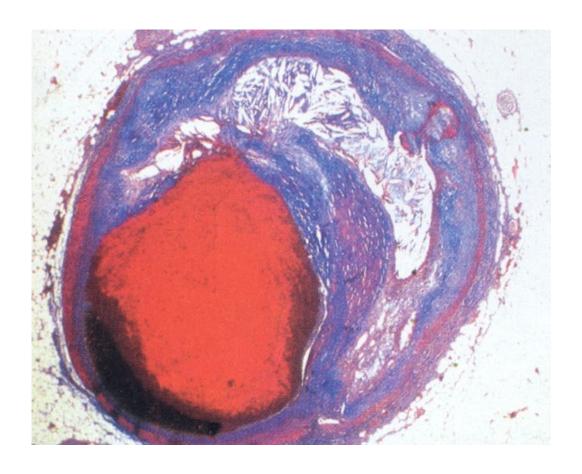
Omega-3-Fettsäuren: 1000mg/d

Alterungsfaktor Silent Inflammation


Wie therapieren?

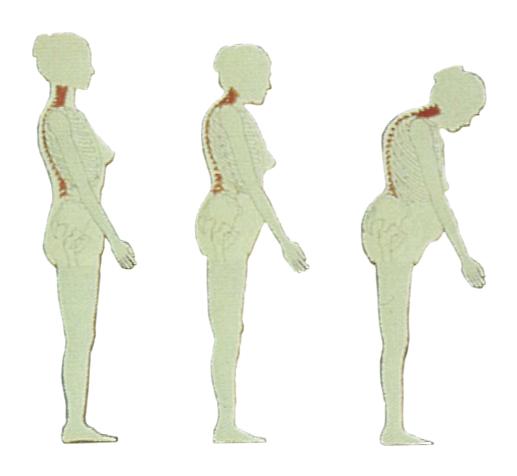
Aspirin 70-100mg/d

Die neuroendokrine Theorie

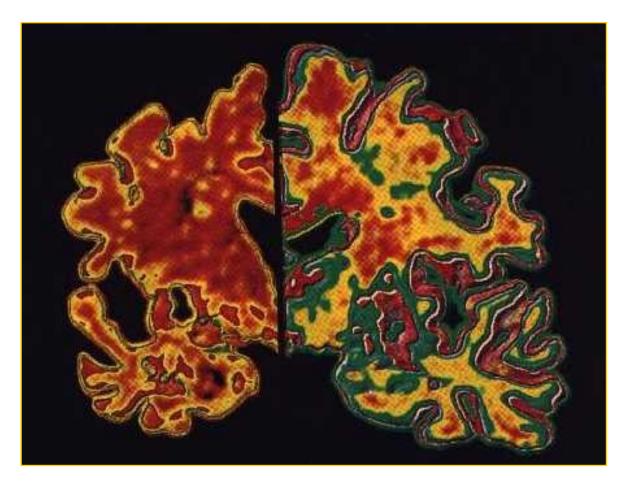

Anti-Aging-Medizin ist die

Präventivmedizin des

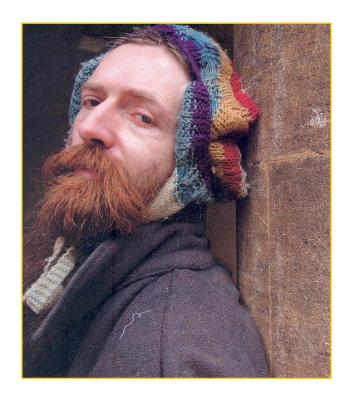
21. Jahrhunderts

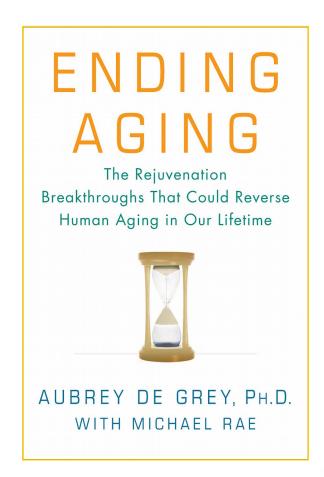

Organspezifisches Altern

Arteriosklerose


Organspezifisches Altern

Osteoporose


Organspezifisches Altern


Altern des ZNS

Radical Life Extension

Aubrey de Grey *1963, Bioinformatiker, Cambridge

Radical Life Extension Aubrey de Grey

Talking

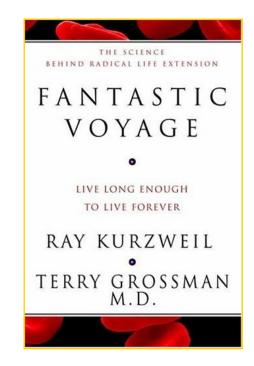
S trategies for

E ngineered

N egligible

S enescence

Radical Life Extension


Was ist die Lebenszeit eines Autos?

Von der Radical Life Extension zum Human Enhancement

Ray Kurzweil

"Wer es schafft, die nächsten 30 Jahre zu überleben, wird nicht mehr sterben müssen"

Human Enhancement

Die drei Brücken der Radical Life Extension Ray Kurzweil

Brücke eins: Konsequente Nutzung bereits heute bestehender

ca. 15 Jahre Möglichkeiten der Lebensverlängerung

Lebensstilmodifikation - aggressive

Supplementierung - Hormonersatz

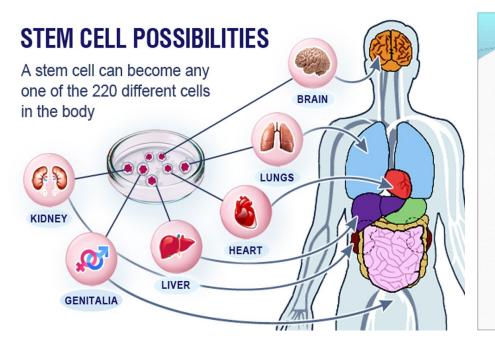
Brücke zwei: Implementierung regenerativer Therapien

20-30 Jahre Stammzelltechnologie - Biotechnologie

Brücke drei: Das Zeitalter der Singularität

ab ca. 2050 Die endgültige Abschaffung des Alterns

Radical Life Extension


Calico – die erste Pharmafirma mit dem Therapieziel Unsterblichkeit

Rejunevation

Stammzelltherapien

Umbilical cord stem cells

- Also Known as Wharton's Jelly
- Adult stem cells of infant origin
- Less invasive than bone marrow
- Greater compatibility
- Less expensive

Rejuvenation

Parabiosis/ Young Plasma

Two Ways Of Deriving Parabiosis Rejuvenation

A proposed human study will inject stem cell-mobilized plasma components (and other pro-youth factors) into elderly people with the objective of inducing meaningful age reversal.

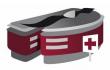
Verita Health Anti Aging Clinic Bangkok

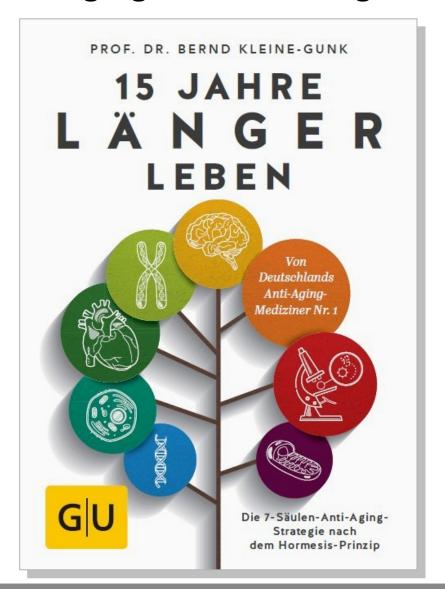
TURNING BACK TIME

These anti-ageing advances are likely more than just fads

Bangkok Post 31 Okt. 2017 +3 mehr STORY: KANOKPORN CHANASONGKRAM

Prof Dr Bernd Kleine-Gunk.




Anti-Aging – Das Nahziel

"Mit 100 gesund in die Kiste"

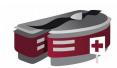
Anti Aging – Was ist möglich?



18. Konferenz der GSAAM

Deutsche Gesellschaft für Prävention und Anti-Aging Medizin e. V.

Anti-Aging und Präventionsmedizin State of the Art 2018



8.-10. Juni 2018 München

Tagungsort: Hilton Munich Park Hotel

www.gsaam-konferenz-2018.de

Tagungsleitung: Prof. Dr. med. Alfred S. Wolf

